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Abstract

Recently, more and more experimental studies indicate that a mature active control design toward practical

implementation requires consideration of robustness criteria in the design process, which includes the performance

robustness in reducing tracking error and in resistance to external disturbance and measurement noise, and the stability

robustness with respect to system uncertainty. In this paper, a robust control method employing these robustness criteria

that can be further converted to a generalized H1 control problem is presented for control of civil structures. To facilitate

computation of H1 controllers, an efficient solution procedure based on linear matrix inequalities (LMI), the so-called

LMI-based H1 control, is introduced. For verifying applicability of the proposed method, extensive simulations were

conducted on a numerical building model with active bracings under seismic excitation, which was constructed from a full-

scale steel frame building that was once tested on a shake table. In the simulation, system uncertainty is assumed in the

controller design and the use of acceleration feedback is emphasized for practical consideration. From the simulation

results, it is demonstrated that the performance of H1 controllers proposed is remarkable and robust, and the efficiency of

LMI-based approach is also approved. Therefore, this robust control method is suitable for application to seismic

protection of civil frame buildings.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past two decades, the use of active control on civil engineering structures for suppression of
seismic- and wind-induced vibrations has attracted a great deal of attention because of its remarkable
effectiveness (e.g., Refs. [1–3]). Considerable research efforts on the experimental verification using shake table
tests and wind tunnel tests have been made and presented in several literatures (e.g., Refs. [4–9] etc.). The
valuable experience gained through these tests indicates that a mature active control design toward practical
implementation requires the consideration of robustness criteria in the design process, that is, the performance
robustness in reducing the tracking error, in resistance to the external disturbance and measurement noise, and
the stability robustness with respect to the existence of system uncertainty [10]. In particular, the stability
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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robustness to uncertainty is relatively important in the stage of controller design because the properties of
most civil structures are not easy to be precisely predicted. Among the advanced control strategies proposed in
many literatures (e.g. Refs. [2,3]), H1 control strategy is particularly useful in designing the robust controller
because these robustness criteria in a way can be interpreted as the H1 norm of a transfer function to be
smaller than a given value.

The solution method for computing H1 controllers has been broadly discussed in the control community
since the past decades (e.g., Refs. [10–13]). Among all, two typical literatures, i.e., Refs. [12,13], presented a
numerically efficient methodology by solving two algebraic Riccati equations. However, its application is
restricted to the so-called regular control system (i.e., D12 and D21 in Eqs. (4) and (5) of the later sections have
full column ranks). Later, a new methodology based on the solution of linear matrix inequalities (LMI), which
can be directly derived from the Bounded Real Lemma, was proposed by Gahinet and Apkarian [14], and
termed as the LMI-based H1 control. The theorem of the LMI-based solution method is more
straightforward and no restriction is required. Besides, this solution procedure is quite efficient in terms of
computation.

Based on these understandings, in this paper, an H1 control method that takes the robustness criteria into
account will be proposed using the LMI-based solution procedure. For demonstration, a numerical model of a
full-scale seismic-excited building was used to conduct numerical simulation for verifying its applicability
toward implementation on civil engineering structures. This full-scale building considered herein is made of a
three-story spatial steel rigid frame and equipped with an active bracing system on the first floor (see Fig. 8 in
the numerical simulation section). It was once constructed on the shake table of the National Center for
Research on Earthquake Engineering (NCREE), Taiwan for verification of active control. This numerical
model of the building was constructed and presented in Ref. [7] and its validity has been well verified through
shake table tests. By the fact shown in Ref. [7], this numerical model was esteemed to be suitably used for
numerical simulation to verify other control methods to be employed. In addition, the comparisons with the
numerical results using the linear quadratic Gaussian (LQG) control were also made for demonstration of
their control performance.

2. Formulation

In this section, we will first describe the basic concept of generalized H1 control for a controlled system,
followed by a brief description of the LMI-based procedures for solving H1 controllers proposed by Gahinet
and Apkarian [14]. Secondly, the concept of robustness criteria in a form of H1 norm is introduced for
controlling a physically seismic-excited structure. Thirdly, the formulation of forming an H1 control problem
that takes these robustness criteria into account will be derived in a way that the LMI-based procedures can be
utilized in consequence.

2.1. Generalized H1 control

A typical block diagram of a generalized H1 controlled system is shown in Fig. 1. The generalized plant
system is denoted by GðsÞ which has two sets of inputs W and U, and two sets of outputs z and y. In Fig. 1, the
G(s)
W z 

yU 

K(s)

Fig. 1. Block diagram of a generalized H1 control problem.
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m1-dimensional vector W is the exogenous input, which might involve the external disturbance, measurement
noise or reference signal, while the m2-dimensional vector U is the control command from a controller. The
p1-dimensional vector z that contains the physical quantities to be attenuated is referred to as the controlled
output, while the p2-dimensional vector y that contains the measurements to be used as the feedback quantities
is referred to as the measured output. The block denoted by KðsÞ represents the transfer function of a dynamic
output feedback controller to be designed. In the concept of H1 control, the objective is to design an
appropriate dynamic output feedback controller KðsÞ such that the transfer function from W to z, denoted as
HzW, is stable and its H1 norm, denoted by kHzWk1, is smaller than a given attenuation value g, i.e.,
kHzWk1og. The H1 norm of the transfer function HzW is defined as

kHzWk1 ¼ Sup
WðtÞ2R

kzðtÞk2
kWðtÞk2

, (1)

where k:k2 ¼ ð
R1
0
ð:ÞTð:ÞdtÞ

1=2 is the L2 norm of a time-variant vector. In other words, the H1 norm is the worst
case of the ratio of output’s L2 norm versus input’s L2 norm. Therefore, the condition kHzWk1og obviously
implies kzðtÞk2ogkWðtÞk2. It can be easily shown that the H1 norm in Eq. (1) for a linear system can be
equivalently expressed as

kHzWk1 ¼ Sup
o2R

r̄ðHzWðjoÞÞ, (2)

in which j ¼
ffiffiffiffiffiffiffi
�1
p

and r̄ð:Þ denotes the largest singular value.
In the state space, the generalized plant GðsÞ can be represented by a state equation expressed by

_X ¼ AXþ B1Wþ B2U, ð3Þ

z ¼ C1XþD11WþD12U, ð4Þ

y ¼ C2XþD21WþD22U, ð5Þ

in which A 2 Rn�n; B1 2 Rn�m1 ; B2 2 Rn�m2 ; C1 2 Rp1�n; D11 2 Rp1�m1 ; D12 2 Rp1�m2 ; C2 2 Rp2�n; D21 2

Rp2�m1 ; D22 2 Rp2�m2 ; ðA;B2Þ is stabilizable and ðA;C2Þ is detectable. Likely, the state equation of the
controller KðsÞ can be expressed by

_Xk ¼ AkXk þ Bky, ð6Þ

U ¼ CkXk þDky, ð7Þ

in which Ak 2 Rk�k, Bk 2 Rk�p2 , Ck 2 Rm2�k, Dk 2 Rm2�p2 are constant matrices to be determined by a control
theory. For simplifying the following derivation, another measured output ȳ ¼ y�D22U ¼ C2XþD21W

instead of y is firstly used in Eqs. (6) and (7). This assumption will be eliminated later by a simple
transformation described in the subsequent section. Thus, the corresponding matrices for the controller in
Eqs. (6) and (7) shall be replaced by Āk; B̄k; C̄k; D̄k, respectively. Hence, the closed-loop transfer function HzW

can be obtained by substituting Eq. (7) into Eq. (4) as

HzWðsÞ ¼ Dcl þ CclðsI� AclÞ
�1
Bcl, ð8Þ

Acl ¼ A0 þ bh1; Bcl ¼ B0 þ bhf21; Ccl ¼ C0 þ f12h1; Dcl ¼ D11 þ f12hn21, ð9Þ

in which

A0 ¼
A 0

0 0k

" #
; B0 ¼

B1

0

" #
; C0 ¼ ½C1 0�; b ¼

0 B2

Ik 0

" #
; 1 ¼

0 Ik

C2 0

" #
,

f12 ¼ ½ 0 D21 �; f21 ¼
0

D21

" #
; h ¼

Āk B̄k

C̄k D̄k

" #
. ð10Þ

In Eq. (10), 0k represents a ðk � kÞ-dimensional matrix with all 0 entries and Ik represents a ðk � kÞ-
dimensional identity matrix.
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2.2. LMI-based solution procedure

According to the bounded real lemma (e.g., Refs. [14,10]), a controller KðsÞ in Fig. 1 that satisfies the
condition of kHzWk1og exists if and only if there exists a symmetric matrix Xcl 2 RðnþkÞ�ðnþkÞ40 (i.e., Xcl is
positive definite) such that

A
T

cl
Xcl þ XclAcl XclBcl C

T

cl

BT
cl
Xcl �cI DT

cl

Ccl Dcl �cI

2
64

3
75o0. (11)

In other words, the controller matrices ðĀk; B̄k; C̄k; D̄k; Þ and a positive definitive Xcl that satisfy inequality (11)
can be found if and only if kHzWk1og. Inequality (11) can be further rewritten as

WXcl
þ wThTnXcl

þ nT

Xcl
hwo0, (12)

in which

WXcl
¼

A
T

0Xcl þ XclA
T

0 XclB0 C
T

0

BT
0Xcl �cI DT

11

C0 D11 �cI

2
64

3
75, (13)

w ¼ ½1; f21; 0ðkþp2Þ�p1
�; nXcl

¼ ½bT
Xcl; 0ðkþm2Þ�m1

; fT12�.

Note that inequality (12) is an LMI for either h or Xcl individually, but not for both. By partitioning Xcl and
X
�1

cl
as

Xcl ¼
S N

NT
�

� �
; X�1

cl
¼

R M

MT
�

� �
, (14)

in which R;S 2 Rn�n; M;N 2 Rn�k, and employing the projection lemma [14], several manipulations for
inequality (12) lead to two LMIs for R and S (the detail derivation is described in Appendix A for the reader’s
interest), i.e.,

NR 0

0 Im1

" #T ARþ RA
T

RC
T

1 B1

C1R �cI D11

B
T
1 D

T
11 �cI

2
64

3
75 NR 0

0 Im1

" #
o0, (15)

NS 0

0 Ip1

" #T ASþ A
T
S SB

T

1 C
T

1

BT
1S �cI D11

BT
1 DT

11 �cI

2
64

3
75 NR 0

0 Ip1

" #
o0, (16)

in which NR and NS are the null base matrices of ½BT
2 DT

21�, and ½C2 D21�, respectively. In addition, the positive
definiteness of Xcl equivalently leads to another LMI for R and S as

R I

I S

� �
X0 (17)

[15]. Hence, Eqs. (15)–(17) are the three basic LMIs for solving H1 controllers.
Finally, the LMI-based solution procedure for the H1 controller can be summarized in the following:
(i)
 Use Matlab LMI Toolbox to solve g, R and S by constructing a minimization problem with an objective
function J expressed by

J ¼ gþ aTraceðRÞ þ bTraceðSÞ, (18)
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which is subject to three LMI constraints described in inequalities (15)–(17). In addition, one more
constraint expressed as

g40:5gmin (19)

can be also used to restrict the value of g. In Eq. (18), a, b are two specified weightings to modulate the
trace of R and S, and the parameter gmin in Eq. (19) is given to confine the lower bound of g. Minimization
of the traces of R and S is helpful in slowing down the dynamics of the controller for facilitating
implementation.
(ii)
 From the identity

MN
T
¼ I� RS, (20)

which is actually induced from Eq. (14), the matrices M;N 2 Rn�k in full column rank can be obtained by
using the singular value decomposition. Thus, by substituting M and N into an identity

S I

NT 0

� �
¼ Xcl

I R

0 MT

� �
, (21)

which can be also deduced from Eq. (14), the matrix Xcl 2 RðnþkÞ�ðnþkÞ can be obtained.

(iii)
 Construct a minimization problem with an objective function

J ¼ TraceðĀkÞ, (22)

subject to the LMI constraint described in inequality (12), by using the Matlab LMI Toolbox to solve the
controller matrices Āk 2 Rk�k, B̄k 2 Rk�p2 , C̄k 2 Rm2�k, D̄k 2 Rm2�p2 in the matrix h.
(iv)
 Once Āk, B̄k, C̄k, D̄k are obtained, the assumption of using measured output ȳ ¼ y�D22U ¼ C2XþD21W

to replace y is eliminated by a simple transformation, i.e.,

Ak ¼ Āk � B̄kD22ðIþ D̄kD22Þ
�1
C̄k; Bk ¼ B̄k � B̄kD22 Iþ D̄kD22

� ��1
D̄k,

Ck ¼ ðIþ D̄kD22Þ
�1
C̄k; Dk ¼ ðIþ D̄kD22Þ

�1
D̄k. ð23Þ
2.3. Robustness criteria in robust control

For completeness of the derivation for robustness criteria, the physical system considered in this section is
restricted to the so-called matched system, i.e., the system excited by the control effort (command) U and
disturbance d (earthquakes or wind loads) through the same mechanism. The block diagram of such a physical
system with active control is shown in Fig. 2 by the part with solid borders and lines. For the unmatched
systems to which most structural systems belong, these robustness requirements derived can be still applied,
except that the performance will degrade to some degrees, depending on the situation.

In Fig. 2, the block P is the structural system (plant system); the block K is the controller system; r is the
reference signal (to be used in a tracking problem); U is the control command generated from the controller; d
is the external disturbance such as earthquake or wind loading; n is the measurement noise; y is the measured
structural response; and e is the error signal which is the subtraction of the measured response from the
reference. In vibration suppression problems, the reference r can be considered to be a zero signal and the
  
K P 

d
 

n

y
r

e U Wy

WU

We
ze

zy

zU

−

+

+

Fig. 2. Block diagram of a physical system with active control.
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same block diagram applies. It can be easily shown that the following relations in the frequency domain can be
derived from the block diagram in Fig. 2:

y ¼ T0ðr� nÞ þ S0Pd, ð24Þ

e ¼ S0rþ T0n� S0Pd, ð25Þ

in which S0 is the so-called sensitivity function and T0 is the complimentary sensitivity function, defined
respectively as

S0 ¼ ðIþ PKÞ
�1; T0 ¼ ðIþ PKÞ

�1
PK. (26)

It is well understood that the robustness criteria considered in active control should contain both of
performance robustness and stability robustness. As such, performance robustness may include resistance to
the influence of reference r and disturbance d, and the influence of measurement noise n on the response y or
error e. In a way, the ‘‘size’’ of influence in frequency domain can be somehow quantified by the ratio of L2

norm of the output vector versus that of the input vector. This ratio at a certain frequency o is mathematically
bounded by the largest singular value of the corresponding transfer function, which is denoted by r̄ð:Þ. It
should be noted that the L2 norm here simply means the L2 norm for a constant vector, rather than the
definition used in Eq. (1) for a time-variant vector. Therefore, the performance robustness for disturbance
attenuation, tracking error reduction and noise rejection in robust control can be summarized as follows [10]:
(i)
 For maintaining performance of disturbance attenuation, the condition r̄ðHydðoÞÞ51 is required for
8o 2 R, i.e., r̄ðS0PÞ51 for 8o 2 R. Or, more conservatively, the condition r̄ðS0Þ51 is required for
8o 2 R.
(ii)
 For maintaining performance of tracking error reduction, the condition r̄ðHerðoÞÞ51 is required for
8o 2 R, i.e., r̄ðS0Þ51 for 8o 2 R.
(iii)
 For maintaining performance of noise rejection, the condition r̄ðHynðoÞÞ51 is required for 8o 2 R, i.e.,
r̄ðT0Þ51 for 8o 2 R.
Items (i) and (ii) indicate r̄ðS0Þ51 for 8o 2 R, and item (iii) indicates r̄ðT0Þ51 for 8o 2 R. However,
from the relation S0 þ T0 ¼ I, it is not possible to simultaneously achieve both conditions. Fortunately, since
the dominant frequency distribution of the disturbance d used in (i) (or reference r used in (ii)) lies in the
relatively low range and that of the noise n used in (iii) lies in the relatively high range (see the illustration in
Fig. 3), by imposing the conditions r̄ðWeS0Þo1 and r̄ðWyT0Þo1 for 8o 2 R with appropriate frequency-
dependent weighting functions We and Wy which physically represents the frequency distribution of d (or r)
and n, appropriate frequency distributions for r̄ðS0Þ and r̄ðT0Þ can thus be achieved. Consequently, the
performance robustness for disturbance attenuation, tracking error reduction and noise rejection can be
expressed as

kWeS0k1o1, ð27Þ

kWyT0k1o1. ð28Þ
(T0)
Wy

We
(S0)

 

σ

ω ω

σ

(a) (b)

Fig. 3. Schematic diagram of frequency distribution: (a) r̄ðS0Þ and We; (b) r̄ðT0Þ and Wy.
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Other than these, another issue concerned in robustness criteria is the stability robustness, which is the
retaining stability in time with respect to system uncertainty. As mentioned in much literature (e.g., Ref. [10]),
system uncertainties are mostly classified into multiplicative and additive uncertainties for convenience of
discussion. Their effects on the system stability and the corresponding conditions for stability robustness are
described in the following [10]:

(i) Additive uncertainty: A plant system with additive uncertainty can be represented by a set of transfer
functions denoted by P ¼ fPþWUD : D is a stable transfer function of uncertaintyg, in which WU is a
weighting matrix for modulating the ‘size’ of D. For convenience of further discussion, D can be properly
adjusted with kDk1p1 to accommodate all possible uncertainties in the considered frequency range. The
representation of additive uncertainty in the block diagram of a physical system is shown in Fig. 4. By means
of the linear fractional transformation (LFT) technique, the block diagram in Fig. 4 can be converted into a
simplified block diagram with an upper block D and a lower block �WUKS0, as shown in Fig. 5. The
derivation is shown as follows. Since the observation of U ¼ Ke ¼ �Ky ¼ �KðPUþ oÞ from Fig. 4 leads to
U ¼ �ðIþ KPÞ

�1
Ko, i can be expressed as i ¼ �WUðIþ KPÞ

�1
Ko ¼ �WUKðIþ PKÞ

�1
o ¼ �WUKS0o.

Furthermore, by the small gain theorem [10], the system stability is guaranteed if

kWUKS0k1o1. (29)

Hence, inequality (29) is a condition for stability robustness.
(ii) Multiplicative uncertainty: The plant system with the multiplicative uncertainty can be represented by a

set denoted by P ¼ fðIþWyDÞP : D is a stable transfer function of uncertaintyg, in which Wy is a weighting
matrix for modulating the ‘size’ of D. Once again, D can be properly adjusted with kDk1p1 to cover the
bounds of all possible multiplicative uncertainties in the considered frequency range. The representation of
multiplicative uncertainties in the block diagram of a physical system is shown in Fig. 6. By means of the
technique of LFT, the block diagram in Fig. 6 can be converted into a simplified block diagram with an upper
block D and a lower block �WyT0, as shown in Fig. 7. By the small gain theorem, it is concluded that the
system stability is guaranteed if kWyT0k1o1, which is actually the same condition as inequality (28).

To summarize the concept described above, robustness criteria for active control should at least contain
conditions of performance robustness and stability robustness expressed in inequalities (27)–(29).
Conceptually, the transfer functions involved in these three conditions can be interpreted as the transfer
functions from the reference r to e, U and y, multiplied by three weighting (filter) functions We, WU and Wy,
respectively. Following this idea, the controlled outputs considered herein become the three filtered quantities
ze, zU and zy, as illustrated by the block with dotted lines in Fig. 2.

2.4. Formulation of robust H1 control for civil structures

According to the ideas introduced in the previous sections, the remaining task is to convert the three
robustness conditions expressed in inequalities (27)–(29) into a generalized H1 problem which will be
presented in this section. Let us consider a civil structure with active control subject to external excitations.
A matched system is used in the block diagram presented in Fig. 2 for constructing robust H1 controllers.
Apparently, this is not the case for actual civil structures; degradation of control performance to some extent
will be expected. First of all, the state equations of the plant system P (civil structure), weightings We, WU and
  
K P y

e U
 

WU  
oi

 

−

+
+

∆

Fig. 4. Block diagram with additive uncertainty.
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Fig. 5. Simplified block diagram with additive uncertainty after using LFT.

  
K P y

e U  

Wy  oi

 

∆

−
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Fig. 6. Block diagram with multiplicative uncertainty.

 
i o 

 −Wy T0

∆

Fig. 7. Simplified block diagram with additive uncertainty after using LFT.
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Wy are expressed by

_XP ¼ APXP þ BPdþ EpU; y ¼ CPXP þDPdþ FPU, ð30Þ

_Xe ¼ AeXe þ Bee; ze ¼ CeXe þDee, ð31Þ

_XU ¼ AUXU þ BUU; zU ¼ CUXU þDUU ð32Þ

and

_Xy ¼ AyXy þ Byy; zy ¼ CyXy þDyy, (33)

respectively, in which XP, Xe, XU, Xy are the state vectors; AP, BP, CP, DP, EP, FP, Ae, Be, Ce, De, AU, BU, CU,
DU, Ay, By, Cy and Dy are constant matrices in the state equations with appropriate dimensions. Besides the
transfer functions from r to ze, zU and zy that are to be constructed according to the robustness criteria in
inequalities (27)–(29), it is esteemed necessary for vibration suppression to also include the transfer functions
from the external disturbance d to ze, zU and zy for attenuation purpose. Thus, by considering r and d as the
exogenous input W, ze, zU and zy as the controlled output z, and e as the measured output (because e is equal
to �y when r is equal to 0), a generalized H1 control problem with control objective kHzWk1og can be
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formed with state equations expressed by

_X ¼ AXþ B1Wþ B2U; z ¼ C1XþD11WþD12U; e ¼ C2XþD21WþD22U, (34)

in which

X ¼

XP

Xe

XU

Xy

2
666664

3
777775; W ¼

r

d

" #
; z ¼

ze

zU

zy

2
664

3
775; A ¼

AP 0 0 0

�BeCP Ae 0 0

0 0 AU 0

ByCP 0 0 Ay

2
666664

3
777775; B1 ¼

0 BP

Be �BeDP

0 0

0 ByDP

2
666664

3
777775,

B2 ¼

EP

�BeFP

BU

ByFP

2
666664

3
777775; C1 ¼

�DeCP Ce 0 0

0 0 CU 0

DyCP 0 0 Cy

2
664

3
775; D11 ¼

De �DeDP

0 0

0 DyDP

2
664

3
775; D12 ¼

�DeFP

DU

DyFP

2
664

3
775, ð35Þ

C2 ¼ ½�CP 0 0 0�; D21 ¼ ½I �DP�; D22 ¼ �FP.

The comparison of Eq. (34) and Eqs. (3)–(5) shows their similarity, except that y in Eq. (5) is replaced by e for
feedback. Thus, the LMI-based solution procedure introduced in the previous section can be used to design
the robust H1 controller.

3. Numerical example

To demonstrate the applicability of the robust H1 controller presented to civil structures, extensive
numerical simulations using a numerical model of a three-story full-scale seismic-excited building were
conducted. The building has a rectangular shape with a floor area of 4:5m� 3m in each floor and a total
height of 9m (3m for each story), which was once constructed on the shake table of NCREE for experimental
verification (as shown in Fig. 8). The masses of the building from the bottom to top floors are 1144.16, 1144.16
and 1113:62 kgf s2=m, respectively. An active bracing system is connected between the ground and the first
floor to provide the active force to the building for seismic protection. This actively controlled building has
once been tested using LQG control and the results were presented in Ref. [7]. In Ref. [7], the numerical model
of this actively controlled building was successfully constructed and the experimental verification has been
conducted to show its correctness. Therefore, this numerical model will be directly used as the true model
system in the numerical simulation herein. The system matrices of this numerical model can be found in the
web site URL http://www.ce.tku.edu.tw/�jcwu/research/ncree_analytical.html. In this true system, the
available responses of the building include relative displacement xi ði ¼ 1; 2; 3Þ of each floor w.r.t. the ground,
absolute acceleration €xia ði ¼ 1; 2; 3Þ of each floor and the stroke xf of the actuator. Two earthquakes, the 1940
El Centro (100 s) and 1995 Kobe (60 s) earthquakes, are used as the excitation sources. The amplitude of PGA
(Peak Ground Acceleration) adjusted to 0.1 g is used in the simulation as in the previous tests performed in
Ref. [7]. In fact, since controller designs presented herein are linear control designs, the results under different
scales of excitation can be easily calculated by multiplying a proportional factor.

The building with zero control command has three natural frequencies and damping ratios equal to 7.363,
22.933 and 37.966 rad/s, and 1.38%, 2.46% and 1.32%, respectively. For comparison, the response quantities
of the building with zero command under earthquakes are tabulated in Table 1, and referred to as the ‘‘No
Control’’ case in what follows. In Table 1, ‘‘Peak’’ represents the peak value in the entire time history, while
‘‘rms’’ represents the root-mean-square values within the dominant period from 24 to 64 s for El Centro
earthquake and 14 to 54 s for Kobe earthquake.

Since the displacement and velocity measurements are expensive in implementation, absolute accelerations
of all three floors are chosen to be the feedback quantities, i.e., y ¼ ½ €x1a; €x2a; €x3a�

T. However, all seven response
quantities mentioned above will be computed. It should be noted that during the design stage, the eight-state
nominal system used in Ref. [7] for LQG control is constructed through the well-known balanced-state

http://www.ce.tku.edu.tw/~jcwu/research/ncree_analytical.html
http://www.ce.tku.edu.tw/~jcwu/research/ncree_analytical.html
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Fig. 8. Three-story full-scale building on the shake table of NCREE.

Table 1

Response quantities of actively controlled building with zero command (no control case)

El Centro (PGA ¼ 0.1 g) Kobe (PGA ¼ 0.1 g)

(1) Peak (2) rms (3) Peak (4) rms (5)

x1 (cm) 2.050 0.823 2.065 0.664

x2 (cm) 4.592 1.766 4.493 1.428

x3 (cm) 6.232 2.335 5.981 1.889

€x1a (g) 0.171 0.051 0.216 0.040

€x2a (g) 0.262 0.097 0.264 0.078

€x3a (g) 0.371 0.127 0.375 0.103
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reduction method [16] from another system model which is identified with less accuracy than the true system.
The transfer functions of the response quantities due to the actuator command U for both the nominal system
and true system are plotted in Fig. 9 to illustrate the difference. It is observed from Fig. 9 that the size of
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Fig. 9. Comparison of transfer functions of response quantities due to actuator command U: (a) x1, (b) x2, (c) x3, (d) xf , (e) €x1a, (f) €x2a,

and (g) €x3a.
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uncertainty from prediction error is more significant than that just induced from system reduction. The same
nominal system is also used in this paper for the robust H1 controller design in order to examine robustness of
the controller and make comparisons with the LQG results. Herein, the difference between the nominal system
and the true system will be considered as the additive uncertainty and the weighting WU to be chosen should
cover the bounds of all additive uncertainties.

In this study, two robust H1 controllers are designed, denoted as H11
and H12

, respectively. The design
parameters for both controllers are chosen such that H11

requires smaller control effort while H12
requires bigger

control effort, and their simulation results are compared with those of LQG1 (smaller control effort) and LQG3

(bigger control effort) controllers presented in Ref. [7], which use the same measurements y ¼ ½ €x1a; €x2a; €x3a�
T for

feedback. Note that, unlike the proposed H1 control, the LQG algorithm takes into account control performance
(response reduction) as the only objective in designing the controller. The weighting functions and other
parameters used in the LMI computation for each controller are listed as follows: WU ¼ ð4:4sþ 200Þ=ð11sþ

440Þ; We ¼ ð0:02sþ 21; 000Þ=ð0:5sþ 10Þ; Wy ¼ ð180sþ 200Þ=ð1:5sþ 750Þ; a ¼ 0:1589; b ¼ 0:1589 and gmin ¼

200 for the H11
controller; WU ¼ ð3:6sþ 140Þ=ð11sþ 440Þ, We ¼ ð0:02sþ 28; 000Þ=ð0:5sþ 10Þ, Wy ¼

ð180sþ 200Þ=ð1:5sþ 750Þ, a ¼ 0:1589, b ¼ 0:1589 and gmin ¼ 200 for the H12
controller. From the LMI-based
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solution procedure, the resultant attenuation value g is equal to 4134.9 and 3161.1 for the H11
and H12

controller,
respectively. Consequently, two 15-state ðk ¼ 15Þ controllers are thus obtained, and they are further reduced to
eight-state controller by the balanced-state reduction method [16] to facilitate implementation. The simulated
responses using the H11

and H12
controllers under two earthquakes with 0.1 g PGA are tabulated in Columns

(2)–(5) and Columns (11)–(14) of Table 2. In Table 2, the values inside the parentheses are the reduction
percentages with respect to the ‘‘No Control’’ case presented in Table 1. As observed from Table 2, the reduction
percentages of rms responses using the H11

controller achieve about 50% with the control effort about 1000kgf,
while those using H12

controller are further improved toward 60%, with the control effort about 1500kgf. The
reductions for the peak responses are relatively smaller and significant difference in peak value reduction is
observed between the results from two different earthquakes. For comparison, the simulated responses using
LQG1 and LQG3 controllers presented in Ref. [7] are also tabulated in Columns (6)–(9) and Columns (15)–(18) of
Table 2. Based on the results, it is observed that the proposed H1 controllers have as effective performance as
LQG controllers in controlling the frame building.
Table 2

Response quantities of actively controlled building using H1 controllers

H11
LQG1

El Centro (PGA ¼ 0.1 g) Kobe (PGA ¼ 0.1 g) El Centro (PGA ¼ 0.1 g) Kobe (PGA ¼ 0.1 g)

Peak rms Peak rms Peak rms Peak rms

(1) (2) (3) (4) (5) (6) (7) (8) (9)

x1 (cm) 1.395 0.293 2.010 0.308 1.415 0.307 1.970 0.318

(32.0) (64.4) (2.7) (53.7) (31.0) (62.7) (4.6) (52.1)

x2 (cm) 2.475 0.589 3.962 0.606 2.736 0.651 4.051 0.656

(45.9) (66.7) (11.8) (57.6) (40.4) (63.1) (9.8) (54.1)

x3 (cm) 3.002 0.706 4.972 0.746 3.339 0.802 5.240 0.827

(51.8) (69.8) (16.9) (60.5) (46.4) (65.7) (12.4) (56.2)

€x1a (g) 0.121 0.025 0.130 0.020 0.121 0.024 0.147 0.022

(29.0) (50.5) (40.0) (48.5) (29.0) (52.9) (31.9) (45.0)

€x2a ðgÞ 0.159 0.034 0.177 0.031 0.166 0.037 0.192 0.035

(39.5) (65.0) (32.8) (60.7) (36.6) (61.9) (27.3) (55.1)

€x3a (g) 0.185 0.040 0.224 0.037 0.222 0.042 0.266 0.041

(50.2) (68.7) (40.3) (64.2) (40.2) (66.9) (29.1) (60.2)

U (kgf) 1153 262 1782 275 1060 221 1424 224

H12
LQG3

El Centro (PGA ¼ 0.1 g) Kobe (PGA ¼ 0.1 g) El Centro (PGA ¼ 0.1 g) Kobe (PGA ¼ 0.1 g)

Peak rms Peak rms Peak rms Peak rms

(10) (11) (12) (13) (14) (15) (16) (17) (18)

x1 (cm) 1.289 0.255 1.813 0.274 1.339 0.261 1.924 0.288

(37.1) (69.0) (12.2) (58.8) (34.7) (68.3) (6.8) (56.6)

x2 (cm) 2.104 0.468 3.373 0.492 2.239 0.502 3.683 0.538

(54.2) (73.5) (24.9) (65.6) (51.2) (71.6) (18.0) (62.3)

x3 (cm) 2.270 0.544 4.062 0.589 2.653 0.604 4.557 0.663

(63.6) (76.7) (32.1) (68.9) (57.4) (74.1) (23.8) (64.9)

€x1a (g) 0.104 0.023 0.117 0.018 0.101 0.020 0.128 0.020

(39.3) (55.8) (46.1) (54.6) (40.9) (60.8) (40.7) (50.0)

€x2a (g) 0.149 0.029 0.135 0.024 0.133 0.027 0.157 0.026

(43.3) (70.1) (48.9) (69.0) (49.2) (72.2) (40.5) (66.7)

€x3a ðgÞ 0.149 0.032 0.155 0.028 0.170 0.033 0.198 0.033

(59.9) (75.2) (58.7) (73.2) (54.2) (74.0) (47.2) (68.0)

U (kgf) 1706 365 2632 390 1657 323 2430 351
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4. Concluding remarks

The LMI-based H1 controllers that take into account robustness criteria have been introduced.
Robustness criteria include performance robustness in reducing tracking error and in resistance to external
disturbance and measurement noise, and the stability robustness with respect to system uncertainty.
A numerical model of an experimental full-scale three-story seismic-excited building with an active bracing
system, which has been verified through experiments in a literature by the same author, was used in
the simulation to verify the applicability of the proposed controllers toward actual implementation. In the
extensive simulations, two earthquakes, the 1940 El Centro and 1995 Kobe earthquakes, are used as the
excitations to the building. The system uncertainty is assumed in the controller design and acceleration
measurements are used as the feedback quantities for practical consideration. Two H1 controllers were
designed to successfully demonstrate the flexibility of modulating control effort in this approach.
Furthermore, the simulated results of H1 controllers are compared with those of LQG controllers for their
effectiveness. From the simulated results, it was demonstrated that: (1) the LMI approach is efficient in
computing the H1 controller; (2) the effectiveness of H1 controllers presented is remarkable and its
robustness with respect to disturbance attenuation, tracking error, noise rejection and uncertainty is
satisfactory; (3) the performances of H1 controllers are as effective as those of LQG controllers. Therefore,
the LMI-based robust H1 control is suitable for application to civil engineering buildings for seismic
protection.
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Appendix A

Derivation of Eqs. (15) and (16) (excerpted from Ref. [14])
Projection lemma: For a symmetric matrix W and two matrices P and Q, there exists a matrix h satisfying

Wþ P
ThT

QþQ
ThPo0 if and only if WT

P
WWPo0 and W

T

Q
WWQo0, in which WP and WQ are the matrices

whose columns are composed of the null space bases of P and Q, respectively.
By the Projection lemma, the existence of a feasible h in inequality (12) requires the satisfaction of two

conditions

WT
nXcl

WXcl
WnXcl

o0 (A.1)

and

WT
wWXcl

Wwo0, (A.2)

in which WnXcl
and Ww are the matrices of null space bases of nXcl

and w, respectively. In inequality (A.1), Xcl

appears in WXcl
and WnXcl

as well; therefore, it needs further manipulation as follows. From the observation
that nXcl

can be expressed as

nXcl
¼ U

Xcl 0 0

0 Im1
0

0 0 Ip1

2
64

3
75; U ¼ ðbT; 0ðkþm2Þ�m1

; fT12Þ, (A.3)

the null space matrices of nXcl
and U are related by the equation

WnXcl
¼

X�1
cl

0 0

0 Im1
0

0 0 Ip1

2
64

3
75WU. (A.4)



ARTICLE IN PRESS
J.-C. Wu et al. / Journal of Sound and Vibration 294 (2006) 314–328 327
The substitution of Eq. (A.4) into inequality (A.1) leads to

WT
UUXcl

WUo0 (A.5)

in which

UXcl
¼

A
T

0X
�1
cl
þ X�1

cl
A

T

0 B0 X�1
cl
C

T

0

B
T

0 �cI D
T

11

C0X
�1
cl

D11 �cI

2
64

3
75. (A.6)

Now, we have obtained two inequalities (A.5) and (A.2), which guarantee the existence of a feasible Xcl.
A further simplification of inequality (A.5) is performed by substituting the partition of Xcl and X

�1

cl

expressed in Eq. (14) into UXcl
in Eq. (A.6), i.e.,

UXcl
¼

ARþ RA
T

AM B1 RC
T

1

M
T
A

T 0 0 M
T
C

T

1

BT
1 0 �cI DT

11

C1R C1M D11 �cI

2
66664

3
77775 (A.7)

and expressing the null space matrix WU in inequality (A.5) as

WU ¼

W1 0

0 0

0 Im1

W2 0

2
6664

3
7775, (A.8)

in which W1
W2

h i
¼ NR is the null space matrix of ½BT

2 DT
12�. By this, inequality (A.5) is rewritten as

W1 0

0 Im1

W2 0

2
64

3
75

T
ARþ RA

T
B1 RC

T

1

B
T
1 �cI D

T
11

C1R D11 �cI

2
64

3
75

W1 0

0 Im1

W2 0

2
64

3
75o0 (A.9)

or rearranged as

NR 0

0 Im1

" #T ARþ RA
T

RC
T

1 B1

C1R �cI D11

BT
1 DT

11 �cI

2
64

3
75 NR 0

0 Im1

" #
o0. (A.10)

In a similar manner, inequality (A.2) can be rewritten as

NS 0

0 Ip1

" #T ASþ A
T
S SB1 C

T

1

BT
1S �cI DT

11

C1 D11 �cI

2
64

3
75 NS 0

0 Ip1

" #
o0, (A.11)

in which NS is the null space matrix of ½C2 D21�.
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